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Supersonic Inlets Modeling
- Started with Mixed Compression Supersonic inlets

Throat , terminal

Internal Subsonic :
Supersonic Diffuser Fngine

Diffuser Face

Supersonic
Compression

- Now focusing on external compression axisymmetric Inlets

-- Better overall performance for Mach 1.8 or less
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External Compression Modeling

- Isentropic compressible flow relations to model a system of oblique
shocks (no dynamics assuming external dynamics are significantly
faster than internal)
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- Sufficient discretization of centerbody angle (AB) when cowl lip conditions are not
changing

- Shocks focusing at the cowl lip also verifies inlet geometry for designed condition
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Internal Compression Modeling
Supersonic & Subsonic Diffusers

— Internal supersonic and subsonic compression — Quasi 1D
CFD based on compressible Euler
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Mixed Compression Inlets Modeling - Results

- New model (NOIMA) verified against legacy code named
LAPIN, which was verified with testing
-- LAPIN written in FORTRAN (~ 80 routines), based on method of

characteristics
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- New model can be used for controls design to increase
performance and for propulsion and APSE integration
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External Compression Inlet Modeling - Approach @/

Computational Domain
A. 1-D compressible flow cells w/ dynamics and
averaging flows at shock boundary

B. Quasi 1-D CFD compressible flow cells w/ leakage
fluxes estimation

C. Quasi 1-D CFD compressible flow cells

A-B. Moving computational domains

Computational C
domains A B .
Actual Sonic Boundary
Flux leakages across
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External Compression Inlet Modeling — Challenges

Challenges
— Developing generalized formulations for conservation flux
leakages across sonic boundary — Method hasn’t worked yet

— Sensing the shock position to switch between compressible
flow cells and quasi 1D CFD cells — Moving Domain

— Determined mass flow leakage based on test data for various
engine face back pressures to calculate leakage fluxes —
Approach worked but is not generalized

— Remaining issue for inlet dynamics Conical
compressible flow field inherently 2D and
3D for pitch variations
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Results — Ramping the Back Pressure

Back Pressure (N/m?) vs. Time (sec)

Shock Thickness (Cell) vs. Time (sec)

Upstream Shock Position (cell #) vs. Time
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External Compression Inlet Results

Pressure vs. Inlet Domain
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Parallel Compressor Modeling

Objective

— Develop parallel flow path models of propulsion components to study effect
of distortion on propulsion system dynamics and APSE

— First step in the process: develop compressor model with parallel flow paths

Compressor

Axial Compressor

{only rotor shown)
Inlet Bumer Turbine Nozzle
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Overview

P, T

New model derived in
cylindrical coordinates - Euler
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Original model
Allows modeling of disturbance Stage-by-stage, single flow path

from changing flight conditions T T
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Inlet conditions of Pressure,
Temperature & outlet
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Parallel Compressor Modeling Approach

Conservation Dynamics in 2D Cylindrical Coordinates
[ Equations were derived in cylindrical coordinates for compressible &

inviscid flow, assuming flow properties do not vary in the radial direction
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Parallel Compressor Modeling Approach

Mixing volume - weighted average of pressure, temperature outputs from
compressor stages

Mixing Volume Equations
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Parallel Compressor Modeling Results

* Pressure distortion of approximately 0.1%
applied to path 1

1.3

o Path 1
o Path 1 O Path 2
O Path 2 O Path 3
Q\ Path 3 O Path 4
1.208 |- - gzter;;l Line (Normal) 1.298 1 Speed Line (Normal)
~ Speed Line (PostStal) Stalled Path (3) Spocd Lin (Backfon)
. . Speed Line (Backflow)
o Transition to Stall Line S \1/(1) Unstalled Paths
~— ) 1.206
g 1296 <
Rt . . P o (2,4)
o Operating Point o
a 1.294 a 1.294 1~ -
72} 72}
) o
& &
1.202 ' 1.202- Disturbance Applied
Normal Operation State 7, 100% Throttle
Stage 7, 100% Throttle
1.29 1291~
1-28223.78 2.r8 2.r82 2.:84 2."’36 2.88 2.r9 1.285-78 2-r8 2.’.82 2.”84 2.’.86 2.”88 2.r9
mass flow rate mass flow rate

* Pressure disturbance moves Path 1, Path 3 operating points to surge line

* Would experience cascading stall if mass flow rate was not held constant
(as with engine)

15



National Aeronautics and Space Administration

Pressure disturbance (pa)

e Square wave distortion applied to compressor input, path 1
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Parallel Compressor Modeling Results

w10 Stage 1 Stagnation Pressure Stage 1 Rotational Velocity
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* Distortion with shorter duration applied (larger amplitude about 0.2%)
 Different disturbance frequencies produce different distortion patterns
(different frequency domain response)
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Rotational Velocity (rad/s)

National Aeronautics and Space Administration

Parallel Compressor Modeling Results
15t Stage at 100% Speed w/ 1300pa (0.16%) Distortion on Sector 2 & 4
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Engine Operating Schedules

Prior (2009 WS) compressor operating schedule derivation approach
developed for full speed envelope operation — used generic maps

-- Developed a bleed schedule — Info on Inlet Guide Vane (IGV) not available
-- First derived schedule utilizing isolated compressor model
-- Integrated w/ engine: could not maintain original operating line &

turbine unchoked — compressor/turbine performance not exactly matched.
-- Corrected by rescaling turbine maps

Turbine PR map

Operating

Pressure Ratio
N
(8]}
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Corrected Mass Flow Rate Corrected Mass Flow
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 Developed exit nozzle area schedule approach — Objective to fully expa

RPM

Nati
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Exit Nozzle Area Schedule

flow at nozzle exit

-- Approach based on PR vs. Cd (flow discharge coefficient) schedule &

area limit vs. speed

-- Creates feedback system w/ instabilities — Designed Notch filters to

stabilize system

-- System sensitive to unmatched compressor/turbine — required rescaling
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Objective/Approach
» Develop 1D CFD model for exit nozzles for thrust dynamics (before used
nozzle lump volume and chocked compressible flow function)
-- Chosen method: MacCormack’s predictor-corrector technique assuming
subsonic-supersonic isentropic nozzle flow

« Step one - develop model for generic Convergent-Divergent (CD) nozzle
geometry

« Step two — develop model for more complex supersonic engine-
nozzle concept geometry CD

——

v

— External Bypass

— Main Bypass

—— C(Core Flow

——— (Core + Main B.
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Nozzle Modeling

Converging-
Diverging Nozzle et
:a' Outlet
» Throat and Exit Areas used Totel Prossuse, | W
from N+3 engine simulation Total Temperature | —i—= (- | ——s= Pressure,
P,T, ' ‘ o P
orto !; ,'I A 11 ,'I 1
« Used simple shape profile — A}k/_\%

actual N+3 nozzle profile not
known

* Implemented MacCormack’s
method - variable area to be
implemented in formulations

« Some 2D may need to be done

» For propulsion system exit
nozzle area schedules need to
be developed




National Aeronautics and Space Administration

CFD Method- Predictor Step

Predictor

op\' 1, (A1 — 4 ¢ (Pi+1 — Pi ¢ (Yi+1 — Ui
(E)i__zpiui( Ax )_ui( Ax )_pi( Ax )

opy\
—t+At __ At
prt = ol +(5;)

Corrector

t+At

(a_p) 1 t+At t+At (A _Ai—l)_ut_:+At leAt Pi1 ot uiHAt_uit—l
at ), a4l Ax l Ax Pi Ax

i A-
1] /0p\" dp o
t+At _ .t
= p; —{ = — At
Pi pi T 2 (at)i T (at)i




National Aeronautics and Space Administration

(so far steady state — no freq responses)

Results

~r

- N0zzle area

« Generic model verified against
results reported in literature
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Variable Cycle Engine Model

» Dual Spool variable cycle — High bypass at low altitudes to low bypass high
altitudes

» Noise abatement for overland flight
-- Through external bypass & through nozzle design

» Cycle analysis conducted in NPSS — provided geometries and component
performance characteristics for dynamic model

main bypass ¢xternal bypass

e oo
; l' = o 1‘)

. Il --‘l.m{ Ii\ |

-—

core flow
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Variable Cycle Engine Model Components
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Component Modeling - Roadmap & Approach s
Development Roadmap 1 stage —sfe———— 1 stage ————sfe——n+1 stage

Original component models
developed based on J85-13 engine

Many of J85-13 component models
directly utilized for VCE w/ the

appropriate maps and geometries nthstage =" nth stage
compressor,” N — Stator equivalent
element — —Rotor lump volume

Some new component models \ J\

developed (ducts, mixers, splinters, | [

dual core) - VCE V.1 Performance Volume Dynamics

characteristics (maps)

For some components need to ..
develop detailed models — like Continuity of mass, momentum & energy

CFD for inlet & nozzles d

1 . : .
Epsv,n = V(Wc,n - Wc,n+1 - Wb,n)
Need to develop fully operational &

engihned(clontr%l scr;eduldes)/— ] A y ) e/ Ve~ 1)
Methodolo eveloped w/ J85-13 - p~ o | P
& g EWc,n = ZL(Ptc,n - Ptv,n)(l + . Mn)

n

Parallel flow paths for distortion &
boundary layer effects

d Ye . . .
E(psv.n'Ttv.n) = Ve(ﬁc.ff Wc'.n - Ttv.n Wc'.n+] - Ttv.n Wb.n)

n

Propulsion & ASE integration —

Interfaces and controls
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* Control design effort light; hold model together
-- But designed for higher bandwidth controls for

disturbance attenuation

* Engine has higher response capability of ~ 70
rad/sec on high side (~40 rad/sec typically used)

* Potential to use higher response capability to design

for better disturbance attenuation, safety margins,

and engine efficiency
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low pressure spool speed, (rpm)

overall thrust, (N)

3040

3030

N w w w
© o (@] @]
© o = N
o o o o

N
©
[o0)
O

2970

29602

4.6

4.55

4.5

4.45

4.4

4.35

4.3

4.25

VCE Engine Speed and Thrust

—S

-TT"SsS

T T
peed response

peed command ||

|

-

x 10

time, (s)

8 10

T

time, (s)

8 10

low pressure spool speed, (rpm)

3 3.1 3.2 3.3 3.4
4 time, (s)

4.55 /\

overall thrust, (N)
IN
a
\

IN
N
o

——

3 3.1 3.2 3.3 3.4
time, (s)

* Nominal VCE propulsion system thrust
44,100 N or 9,914 Ibf

* A 1% change in fan speed causes
2.9% change in thrust

» Thrust response more underdamped — design

of speed controller also needs to consider
thrust response

29



National Aeronautics and Space Administration

VCE Engine Atmospheric Disturbance and Thrust

Thrust response w/ Atmospheric
Disturbance

With no external compression inlet & no
1D CFD for nozzles

« Case 1; eddy dissipation rate 4x

average of North Atlantic cruise altitudes;

Integral length scale typical (equivalent

to atmospheric turbulence patch size of ~

11 km); max locally dissipating wind
speeds 80 mph
-- Results in thrust variations up to ~
5000 N or 1124 Ib

» Case 2; eddy dissipation rate worst
recorded; integral length scale typical,
max dissipating wind speeds 150 mph
-- Results in thrust variation up to ~
9000N or 20241b
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Variable Cycle Propulsion System Studies

Preliminary - Thrust Spectral for Coupling to AeroServoElastic (ASE) Modes

 Study based on V1. initiat —~li — =
variable cycle engine LBy T
modeling | W= L |
« Atmospheric turbulence w0 gy
model w/ eddy dissipation - KO
rates & momentary wind 0.3k (Ib) ST ==
\\\.\.&.&
gusts up to 180 mph Z Ny R ey
~—" T~ \
m VIV St
S \/ \ vahWH M
’ StUdy shows pOtentla”_y E | eddy dissipation rates | v UU) | |
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. no antic Cruisc ait. | |
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modeling and analysis .+ | — anticipated bound
T e — I
10" 10° 10"
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Future

« Develop complete integrated propulsion system variable cycle
engine dynamic models and control designs

* Develop Integrated APSE system models, integrated vehicle
controls, and conduct APSE studies

« Close integration between NPSS and APSE (already started)

Additional Possibilities of this Research

« Integrate w/ NPSS to develop a complete cycle deck design
and verification package and controls development
platform/Rig

« With gas dynamic model explore higher bandwidth controls to
reduce stall margins and improve efficiency and design
advanced controls to improve flight safety and operability



